
J O U R N A L  OF M A T E R I A L S  S C I E N C E  9 (1974) 989-992  

The spheroidization of fibrous, eutectic 
composites at high temperatures 
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An analysis is made of experimental data on the high-temperature spheroidization of 
Fe, Cu2S and Cu=O rods in the FeS--Fe, Cu--Cu2S and Cu--Cu~O eutectics. The work 
indicated that breakdown in FeS--Fe took place by diffusion in either the matrix or in the 
rod-matrix boundary. In contrast, spheroidization in Cu--Cu=S probably depended on 
transport in either the rod or the interphase boundary, and in Cu--Cu,O breakdown 
took place by diffusion in the eutectic rods only. The latter results confirm that the 
diffusivities of atomic species in eutectic matrices are not necessarily good guides for 
predicting the high-temperature stabilities of fibrous, eutectic composites. 

1. Introduction 
In an effort to produce composite materials able 
to withstand high temperatures, much attention 
has been devoted to determining the thermal 
stability of aligned, fibrous, eutectic composites 
[1-8]. In addition, several theoretical models 
have been developed to explain the geometrical 
changes induced in eutectic rods by capillarity 
[5, 9-13 ]. However, few attempts have been made 
to obtain information on the precise mechanisms 
of instability by making quantitative analyses 
of the existing data. In the present paper, the 
theory of eutectic spheroidization is, with 
appropriate extensions, used to analyse some of 
the most interesting results available (for the 
FeS--Fe [3], Cu--Cu2S [4] and Cu--Cu20 [4] 
rod-like eutectics) with a view to identifying the 
rate-controlling process. 

2. Preliminary considerations 
At elevated temperatures, the eutectic rods in the 
present systems develop periodic variations in 
radius of the form shown in Fig. 1. These 
variations become more pronounced with time 
so that, eventually, each rod breaks up into a 
row of equidistant spheres of equal radii. The 
experimental data enable approximate values to 
be derived for the parameters (defined in Fig. 1) 
of r0, s, ,~(max), and f ( z  = O, A r ~-~ ro/2 ). 

The observed spheroidization may be con- 
trolled by diffusion in either the matrix, the rod, 
or the rod-matrix boundary. If interfacial 
kinetics are ignored, diffusion in either the rod 
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or the boundary may be shown theoretically to 
lead to a value for A(max) of %0 [10]. Alterna- 
tively, if diffusion in the matrix is rate-con- 
trolling, A(max) should be 14r 0 for the present 
values of s i r  o ( ~  6) [11 ]. If interfacial kinetics 
are significant, A(max) is predicted to be appre- 
ciably larger than these values (see Appendix 1). 
Clearly, because of the degrees of freedom 
involved, the rate-controlling process cannot 
easily be deduced by comparing experimental 
and theoretical ,~(max) values. 

Fortunately, however, the controlling dif- 
fusional mechanism may in principle be dis- 
tinguished by (a) computing from the present 
data approximate diffusivities for the three 
possible diffusion paths, and (b) comparing these 
diffusivities with independent values for the rod 
and matrix phases, and typical values for inter- 
phase boundaries. Accordingly, the following 
section is devoted to summarizing and, where 
necessary, deriving approximate formulae for 
this purpose. 

3. Evaluation of diffusion coefficients 
3.1. Diffusivities in the interphase boundary 
Consider the case where interracial kinetics may 
be ignored, the effect of mechanical stress may be 
neglected (see Appendix 2), and the limiting 
process is the diffusion of component 1 in the 
rod-matrix boundary. Then, after Nichols and 
Mullins [10], 

)t ~ (max) f R T  r o 
Dli ~-~ 8Gi 17=y �9 ~-, (1) 
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with symbols given by: Dli, interracial diffusivity 
of component 1; R, gas constant; T, absolute 
temperature; Cli, interracial concentration of 
mobile atoms of component 1 ; I 7, molar volume 
of rod phase; y, interphase boundary energy; 8, 
width of boundary. 

3.2. Diffusivities in the rod phase  
In a similar manner we may write, after [10], 

)t z (max) f R T  
D~(roa) ~'~ 4C~(rod) F2y (2) 

a.a. Diffusivities in the matrix phase  
The case of diffusion in the matrix for A r ~ r o / 2  
is not analogous to the situations treated by 
Nichols and Mullins [10] and Cline [11] and 
must therefore be treated in more detail. More 
specifically, phase differences between the shape 
variations of adjacent rods lead to a more 
complex type of mass transport between rods 
than considered previously [11 ]. It is relatively 
simple to show that the flux j l (matr ix)  to any 
protrusion on a given rod from one of the six 
nearest neighbouring rods is defined by 

0 ~ jl(matrix) ~ Dl(matrix) Cl(matrix)  (3) 
( y ? / r o ) / R T ( s  - 2r0). 

In this expression the upper and lower limits to 
jl(matrix) correspond respectively to a shape 
variation of a neighbouring rod which is exactly 
out of, or in, phase with that of the central rod. 
Now the mean area sustainingj~(raatrix) is nearly 
rrs2~(max)/12, or 15ro 2. Thus the total flow to a 
protrusion on the given rod from the neigh- 
bouring rods, rh~, is the sum of six terms each 
equal to 15ro2Jl{matrix>. On average, half of the 
adjacent rods will have shape variations exactly 
out of phase with that of the central rod, and 
half in phase. Thus 

rh, ~-~ 3 x 15ro 2 . Dl(matrix ) Cl(matrix) (y17/ro)/ (4) 
R T ( s  - 2r0). 

The flux from A to B on the central rod, 
J l (matr ix) ,  is given by the upper limit t o J l ( m a t r i x  ) 
in Equation 4 because the path length for dif- 
fusion from A to B through the matrix, roughly 
�89 approximates here to (s - 2r0). Since 
the mean area sustaining ,Jl(matrix) is nearly 
rr(s/2 --  ro) ~, or 13ro ~, the total flow towards B 
from the two adjacent intrusions, /9/1, is 13r0 ~ . 
2Yl(matrix ). Hence 

N/1 ~'~ 26ro ~ Ol(mutrix) Cl(matrix) (Y? / ro ) /  (5) 
R T ( s  - 2r0). 
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By combining Equations 4 and 5 with the relation 
~rro~tOnax)f / f f  ~ rhl + 2f/I 1 we have finally 

)~z (max) f R T  
Dl(matr ix)  ~ 45C1(matrix) 172y " (6) 

TABLE I Minimum diffusion coefficients for the 
Cu--Cu2S, Cu--Cu20 and EeS--Fe eutectics 
calculated from spheroidization data. 

System Dli  Dl(rod) Dz(matrix) 
(ram 2 sec -1) (mm ~ sec -1) (ram ~ sec -1) 

Cu--Cu~S* 1 10 -a 10 -~, 1 = Cu 
1 = Cu, S 1 = Cu, S 1 ,1  = St 

Cu- -Cu20*  102 10 -1 10 -2, 1 = Cu 
1 = Cu, O 1 =  Cu, O l0 s ,1  = O r  

FeS--Fe~/ 10 -a 10 6, 1 = Fe 10 -7 
1 = Fe, S 10 -~,1 = S t  1 = Fe, S 

*At 1 to 5K below the eutectic temperature [4]. 
tC1 "~ 0.01 tool ~;  C1 '~ 50 mol ~ in all other cases, 
SAt 13K below the eutectic temperature [3]. 

4.  Discussion 
Table I lists values of Dzi, Dz(rod) and 
Dl(ma t r ix  ) calculated with Equations 1, 2 and 6 
from the experimental data of Tables I and II 
and Fig. 1. Since both interfacial kinetics and 
the transport of other species may have partly 
controlled spheroidization, these diffusivities 
are minima. 

Figure I Schematic illustration of the spheroidization of an 
eutectic rod in the FeS--Fe, Cu--Cu~S and Cu--Cu20 
systems. The rod has shape r N ro q- Ar cos 2~rz/;~(max). 
1(max) is found, from optical micrographs [3, 4], to be 
(10 • 5)ro. 

Taking first the present values of Dli, that 
obtained for FeS--Fe  agrees well with those 
determined for interphase boundaries at high 
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T A B L E  I I  Approximate  values of  the physical constants used for calculating the diffusion coefficients listed in 
Table I. 

System r0 (~zm) 3(nm) ~,(mJ m -S) ~ /7(ml mo1-1) 

Cu--Cu2S 0.4 [4] 0.3 500 [4] 0.1 /zm sec -1 [4] 10 
Cu- -Cu~O 0.7 [4] 0.3 15 [4] 0.1 /zm sec -~ [4] 10 
F e S - - F e  1.5 [3] 0.3 500 [3] 10 pm sec -~ [3] 10 

temperatures [14]. In contrast, the values tabu- 
lated for Cu--Cu2S and Cu--Cu20 are in- 
tolerably large. In this connection the copper- 
based systems were held at temperatures so 
high (see Table I) that ~ may have been up to 100 
times the value assumed herein, due both to 
interfacial melting [15] and to the presence of 
molten, segregated impurity at the interphase 
boundaries. This being the case, the values of 
D~j for Cu--Cu2S and Cu--Cu20 should be 
reduced respectively to 10 -2 and 1 mm 2 sec-L 
The former figure is almost the same, within 
error, as a typical self diffusion coefficient for a 
liquid metal near the melting point (N 10-3 mm 2 
sec -~) [16]; but the value for Cu--Cu20 is still 
too large to be admissible. 

T A B L E  I I I  Independent  values for diffusivities in the 
rod and matrix phases of the Cu--Cu~S,  
Cu- -Cu~O and F e S - - F e  eutectics. 

System Dl(rod ) D1(matrix ) 
(ram ~ sec -1) (mm ~ sec -1) 

Cu- -Cu~S ~ 1 10 -6, 1 = Cu [16] 
1 = Cu [17a, b] ~ 1 0  -4,1 = S [ 1 8 ]  

C u - - C u z O  ~-~10-2[17c] 10-6,1 = Cu [16] 
10 -3, 1 = 0 [19] 

F e S - - F e  10-I~ = Fe [16] tO -S, 1 = Fe [20] 
10 -7 ,1  = S [16] ~ 1 0  -6,1 = S 

[17d] 

Turning to the present values of D l ( m a t r i x  ) 
and Dl(rod) ,  it is interesting to compare these 
with the appropriate diffusivities determined at 
the same temperatures and compositions by 
independent methods (see Tables I and III). 
Taking first the FeS--Fe system, the directly 
derived coefficients of diffusion in the rod phase 
are far too small to permit the mass transfer 
required during spheroidization. The present 
values for D l ( m a t r i x  ) are, however, comparable 
to, or less than, the appropriate published values. 
These facts, taken together with the reasonable 

value obtained for Dlj, indicate that spheroidiza- 
tion in FeS--Fe takes place by diffusion in either 
the matrix or the rod-matrix boundary. 

In the case of Cu--Cu2S and Cu--Cu20, the 
published values for the matrix diffusivities 
(Table III) are, with one possible exception, not 
nearly large enough to provide the required mass 
transport. Unfortunately the independent experi- 
mental data for diffusion in Cu2S and Cu20 
do not appear to be complete (see Table III); but 
the available information, considered in the light 
of the revised values of Dlt, indicates that (a) 
spheroidization in Cu--Cu2S probably occurs 
by diffusion in either the rod or the rod-matrix 
boundary, (b) spheroidization in Cu--Cu20 
occurs by transport in the rods themselves. 

In conclusion the above type of approach is in 
principle applicable to a variety of eutectic and 
other systems; and further work in this area 
should be of interest. 

Appendix 1 
The effect of interracial kinetics on 
,~(max)/ro 
For Ar < ro, the difference in interfacial curva- 
ture between A and B is 2[(l/r0 ~) - (4rr~/A2)]Ar 
[11 ]. Thus, from capillarity theory, 

= 2 P(1/ro 2 - 4 2/ 2),Jr, 

where zJF1 is the difference in chemical potential 
of component 1 at A and B. Clearly, if spheroidi- 
zation is controlled by interfacial kinetics, the 
rate of the process will be greatest when terms 
I Alx[ are maximized, or when h is infinite. 
Thus interracial kinetics make )~(max)/r 0 larger 
than when diffusion is the only significant pro- 
cess. 

Appendix 2 
The effect of mechanical stresses 
In general, composites are in a state of stress 
due to differential contractions of the phases 
during the thermal history of the system. 
Fortunately, in Cu--Cu2S and Cu--Cu20 
spheroidization took place a short distance 
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behind  the growth  f ront  dur ing  d i rec t ional  
sol idif icat ion of  the a l loy;  thus, f rom the tem- 
pera tu re  differences given in Table  I, the dif- 
ferent ial  con t rac t ion  o f  rods  and matr ices  
should  have been only 0.001 ~ ,  result ing in a 
negligible state of  stress. 

In  contrast ,  the specimens of  F e S - - F e  were 
cooled  to room tempera tu re  after growth,  
resul t ing in a s t ra in  of  roughly  1 ~ which m a y  
well have led to  significant plast ic  flow. Thus,  
on reheat ing the al loy to the t empera tu re  o f  
spheroid iza t ion ,  plas t ic  flow m a y  well have 
occurred in the oppos i te  sense. In  this connec t ion  
the yield stresses of  metals  a t  t empera tures  near  
the mel t ing point ,  a l though much  less than  at  
r o o m  tempera ture ,  are nevertheless no t  negli- 
gible [21]; in fact  they are comparab l e  to typical  
values of  y/ro. Unfor tuna te ly ,  since the deta i led 
ca lcula t ion  o f  the stress componen t s  would  
prove  exceedingly difficult, it  does not  seem 
poss ible  to specify the er ror  result ing f rom the 
neg lec t  o f  mechanica l  stresses in F e S - - F e .  I t  
would,  therefore,  be wor thwhi le  to s tudy the 
sphero id iza t ion  of  this system by a technique 
equivalent  to tha t  used for  the o ther  alloys.  
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